Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density
نویسندگان
چکیده
The regulation of photosynthetic acclimation to canopy density was investigated in tobacco canopies and in tobacco and Arabidopsis plants with part of their foliage experimentally shaded. Both species acclimated to canopy light gradients and partial shading by allocating photosynthetic capacity to leaves in high light and adjusting chloroplast organization to the local light conditions. An investigation was carried out to determine whether signalling mediated by photoreceptors, sugars, cytokinin, and nitrate is involved in and necessary for proper photosynthetic acclimation. No evidence was found for a role for sugars, or for nitrate. The distribution of cytokinins in tobacco stands of contrasting density could be explained in part by irradiance-dependent delivery of cytokinins through the transpiration stream. Functional studies using a comprehensive selection of Arabidopsis mutants and transgenics showed that normal wild-type responses to partial shading were retained when signalling mediated by photoreceptors or cytokinins was disrupted. This indicates that these pathways probably operate in a redundant manner. However, the reduction of the chlorophyll a/b ratio in response to local shade was completely absent in the Arabidopsis Ws-2 accession mutated in PHYTOCHROME D and in the triple phyAphyCphyD mutant. Moreover, cytokinin receptor mutants also showed a reduced response, suggesting a previously unrecognized function of phyD and cytokinins.
منابع مشابه
Canopy light gradient perception by cytokinin.
We have recently identified cytokinin as an important xylem-carried signal involved in the photosynthetic acclimation of plants to light gradients in dense canopies. Lower leaves become shaded in a dense canopy and consequently have reduced transpiration rates. our measurements have shown that this results in a reduced delivery of cytokinins carried in the transpiration stream to shaded leaves,...
متن کاملTwo Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light.
UNLABELLED The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are...
متن کاملSuboptimal Acclimation of Photosynthesis to Light in Wheat Canopies.
Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly ...
متن کاملPhotosynthetic acclimation to elevated CO 2 in a sunflower canopy
capacity and the ratio of hexose sugars to sucrose, consistent with the hypothesis that sucrose cycling is Sunflower canopies were grown in mesocosom gas a component of the biochemical signalling pathway exchange chambers at ambient and elevated CO 2 concontrolling photosynthetic acclimation to elevated centrations (360 and 700 ppm) and leaf photosynthetic [CO 2 ]. capacities measured at severa...
متن کاملPhotosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs
1. We evaluated the potential for three species of deciduous-forest herbs to exploit seasonal periods of direct irradiance. In particular, we investigated the importance of photosynthetic acclimation as a mechanism for shade-tolerant herbs to utilize direct light reaching the forest floor before canopy expansion in the spring and after canopy leaf drop in the autumn. 2. We measured the photosyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Experimental Botany
دوره 60 شماره
صفحات -
تاریخ انتشار 2009